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TECHNICAL MEMORANDUM 1269

ISENTROPIC PHASE CHANGES IN DISSOCTATING GASES AND THE
METHOD OF SOUND DISPERSION FOR THE INVESTIGATION OF
HOMOGENEOUS GAS REACTIONS WITH VERY HIGH SPEED¥

By Gerhard Demkdhler
(CONCLUSION)

V. DISPERSION OF SOUND DUE TO SPECIAL PHYSICAL EFFECTS, SUCH AS
FRICTION, THERMAL CONDUCTIVITY, AND DIFFUSION
1. Friction and Heat Conductivity in the Plane, Laterally Unlimited

Sound Wave According to Kirchhoff (R-W Longitudinal Damping)

Long before the dispersion of sound due to incomplete chemical
equilibrium had been discovered, A. R. Kirchhoffl had indicated that
friction and heat conductivity produced such sound dispersion in any gas
at correspondingly high frequencies, His final equation for the

quantity g [(48)]2 in the case of the plane, laterally unlimited
sound wave reads: '
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*"Isentropische Zustandsdnderungen in Dissoziierenden Gasen und die
Methode der Schalldispersion zur Untersuchung sehr Schneller Homogener
Gasreasktionen. Zeltschrift fir Elektrochemie, B4 48, No. 3, 19k2,
pp. 116-131. (This paper is a continuastion of NACA IM 1268, the equations,
tables, and figures being numbered in sequence from that report )

1Xirchhoff, Pogg. Ann. Physik 13k, 1868, pp. 177-193.

SNumbers in brackets refer to equations in the first part of this
paper, TM 1268.
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where3 y - oo .-
T ' T =
v = kinematic viscosity, ' (147)
T = temperature conductivity

Developing the sguare root of the equation (146) gives in first
approximation:

2
_enfi . onfi  (onf) (l%v D QT) (118)

a 8q 2&03

3Kirchhoff himself did not use 2;, but the sum of the coefficients
and W' from the friction term p'Aw + p" grad div w of the flow
equation (momentum equation). In the Navier-Stokes equation, it assumes

v
the form VAW + = grad div w.
-3 Al

The kinematic viscosity V =JIb (y = dynamic viscosity, p = density)
P

is not likely to be taken for the stoichiometric conversion factors,
because they Invariably carry subscripts. The temperature conductivity

T depends upon the thermal conductivity X, the specific heat cp,

and the density p, according to the relation 7T = 5551
P

When 2 denotes the average number of collisions per second which

a molecule experiences, -E% i 2 i hfi with it, the order of

ao ao .
magnitude of the dimensionless supplementary terms below the square rodt
of equation (146) can be readily estimated from the sound frequency £

and the number of collisions z.

L
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or in other words, the veloclty of sound with respect to the quantity

ag = -=E 1s not changed by the friction and heat conduction. But
M _

sound absorption occurs, whereby the damplng exponent 7 increases

Proportional to the square of the sound frequencyh f, and is also
proportional to the quantities Vv and T describing the exchange of
momentum and heat and, lastly, inversely proportional to ap3. The

effect of the last two points is that the numerical wvalue of 7 varies
rather little with the temperature for a given frequency f, that is,

only in the measure of the Sutherland correction and the Prandtl number Pr
because

ag3 ~ 13/2 (149)
Vi p\3/2 L+ £ '
T = (—-—) ——=213{; ¢ = Sutherland's (150)
273 213 1+ 8 constant
T
T = g% Pr = Prandtl number (151)

The derivation of equation (146), which Kirchhoff gained only by
complicated calculations, can be omitted here since it appears in the
next section as a special case, wherein the simultaneous concurrence of
incomplete chemical equilibrium of friction and heat conduction on the
sound wave 1s treated exact.

However, 1t is interesting to compute the numerical values resulting
from equation (146) for dissociating COs at 2600° K and 1 atmosphere,

that is, a, 7, 71 &s well as the ensuing quantities e"107 ang 207,

hHence there is a difference with respect to the sound absorption
caused by kinetic reaction, where 7 with rising frequency f tends
toward a constant limiting value (cf. fig. 3c, ™ 1268, p. 58).
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The kinematic wviscosity v of a gas mixture can be approximéted by
the Mann formula® from the kinematic viscosities VJ of the individusl

N : -
gases J and their molar fractions Tg. . - :

; |
o<1V
¥ z‘\)j N (152)

For T=273°K we get with Vgo, = O. 0692, Voo = 0. 133 and

lur

V02 0.13%k cmg/sec with due allowance for the molar fractions

according to Table &, V2730 K = 0.0783. with Sutherland's constant C 2;;5

which was calculated additively from the individual values CCO2 = 27&,
J .
. - N
Cgo = 101, and Cq, = 138 by the foriula C = E Cy ;IJ, formula (150)

finally gilves:

3/2 2
1+238
V26000 X 783( 273 ) — 213
235
ey —t \,__.v.?_éo_q_/ P—
29.4 171 '
= (3.9 = 0.8) cm2/gec _ (153)

' The limit of error was intentiopally put at 20 pefcent, because the
exact validity of Mann's formula (152) and.the témperature relationship

‘of V up to 2600° K according to formuls (150) has not-been experimentally

proved.

5Mann, Gas- u. Wasserfach 73, 570, 1930. See also Rammler, ., and
Breitling, K., Bericht E 6 1937, des Reichskohlenrats “Yber die e
Zahigkeit von Gasen und Gasgemischen sowie ihre Abhangigkeit von der
Temperatur.

- l A

I
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The temperature relationship T follows then by equation (151) with
Pr = 0.85 + 0.09 as_ ' :

T = G%ég—i—%fgg-z (h.6_i.l.h) cm?(sec _ (154)

The insertion of these figures in equation (146) finally gives the
data under No. 2 in Teble T, p. 37. They can be compared with those
quoted under No. 1 which correspond to the sound dispersion (Table 6,
™ 1268, p. 54) caused solely by incomplete chemical equilibrium
(Case II: CO + Op -2 COp + 0). It is seen that, above f = 102 cycles
per second (cps), Kirchhoff's sound dispersion due to irreversible
momentum and heat exchange parallel to the direction of propagation
(R-W longitudinal damping) can no longer be rieglected.

2. Kinetic-Reaction Sound Dispersion and R-W Longitudinal
Damping in the Plane, Laterally Unlimited Sound Wave

What values are to be expected for the velocity and the absorption
of sound, when kinetic reaction and Kirchhoff sound dispersion are
superposed by R-W longitudinel demping? For the 7 values, simple
additivity might. be assumed in first approximation, which would then
afford the data shown under No. 3 of Table 7. For the sonlc velocity a,
the numerical value due to kinetic reaction alone might be suspected,
although this is much more uncertain, since the concurrence of the two
causes of dispersion might be accompanied by special effects. However,
this is to be checked on the basls of a relation derived from equation
(146), with due regard to the incomplete chemical equilibrium, friction,
and heat conduction. ' '

Proceeding from the laws of the conservation of mass, energy, and
momentum, that is, from the equations [(41]] to [(46)] , the energy and
momentum equation are extended to include the heat-conduction and the
friction term, thus replacing equations [(hhﬂ and [(h5X] by the new
energy equetion '

g8 _aV . .d°T S '
a}, = -Pd_'t + Vka—é | (1-55)
X o
and - :
m dz o
o, - v N (156)
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and the previous Euler equation [(h6)] is replaced by the new momentum
equation of Navier-Stokes:

o0& §p+p v 32w

dt ox 3 ox2 (157)

The expressions on the left-hand side of [(h'?)] are entered in equation
(156); the entire equation is divided by the constant quantity PoVp = NOR'I'

the relative temperature variastion STT §T£[I is expressed by equation (16)
O

~

again; the geparate differentiations are affected by utilizing the right-
hand expressions [( 1{-7)-], end, lastly, the temperatu.re conductivity

T=_}_=E_V>»(n-l) "-(158-)
CpP Cp No_l'\:fc

ie introduced in place of the heat conductivity \.

Il

The calculation (all small terms of second or higher order being d.isre-___
garded) gives then the energy equation -

2 2 . . —
kfL - &7 Z 4+ {1 - € ot £ ' -
n /v, h /Do

m 2 ' . . -
: Z(Am ; %n-rvm)% “o (159)

which, together with the unaltered lower n gross reaction equa.tions of
the system [_(69)]

Zm No

with B';; défined by equations [(71)] [ )] and [(23)] agein forms an
equation system from which the ratlo. 1-3—2 -:TJ can be immediately computed.
o]

L

ot
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Hence,
2 2 2 -2
g & &= g
R - 27T - V72_KT -V RT} . . . - V 2_RT
- (o - (oo - vefer) - o - )
(A1 + KC1) B'yy B', e B
(A2 + K.C2) B'Ql B'22 _- . . B'2n
1 \ . - - 1
-p YQ } (A, + KCnp) B'n1 B' o _ B''n (161)
Po & a g g g
- KT - V.2 KT - V. & _ kT - V 5 RT
(l h )(Al lh >( eh ) (An ny )
Cy B Blip B'1n
1 1 1
Co B 21 B'oo Bon
Cn B'm1 B' o B B''n

The first term at the left above in the numerator determlnant can be
decomposed in two summands S ]

H:(]_ - g;.'.) = H:( - 8h_§m‘> + (K - 1)552-” ' (162)



But with it the numerstor determinant can be represented as sum of

NACA ™ 1269

two determinants of which one is the determinent of the denominator
multiplied by k. Hence, after division: )

2 g2 )( g2 ) g2, )
k - )&kt (A, -~ v;2kT - Vo2=RT] . . [An - V. 2_KT
( )= (1 1%°7) (e - Vo n - Yy )
1 R . 1
Ay By B = B
T 1] 1
Ay By Blop . Blop
] ? ]
-p VO An B nl B n2 - — B nn
—_— = K + 16
Po ¥ g2 v ge v g2 T v ggn'r (163)
1 - Hm' Ay - 15557 (A2 - e_h_n . A, - e
B' . B' -. B
< 11 12 in
1
o B'oy Bl - Blon
B! B! . . '
Cn 1n n2 —- B nn
The determinants are introduced -
.
0 Ay As C Ay
Ay B'1y B'ip » B'1n
H
by =) Ao B'2y Blgg + « - Blpy (164)
Ar; B:nl B:n2 B

| E o)
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AP

A‘3 =

B'y1

Biol

1
B nl

B'yo

(k- 1)(- v1)(- V2)

Ay

Ap

B'11

B'p1

1
B nl

B'ip -

B'22 .

B2

B'lz

B'op

B'po

. (- )
. _B'ln

B'2n

. B!

(165)

(166)

(167)
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The first two (164) and (165) are those already met in [(70)]. If
no shifting chemical equilibriums are present in the gas:

A'1=> 0 Alg=>1..  Alg— (x - 1) Aly—>1 (168)
For (163) .
v Al + € v Al3 ' o ;” o
2ok, b o (169)
P ¥ : 2. _ . L A

g
LAYy - =KT A'y
2 %
- g2 ) - : ) - -

When the quantity T;KT is sufficiently smsall, the equation {k?Oﬂ
regults, as is to be expected. - - T
w AL
Po ¥

hydrodynamic continuity and momentum equations, that ié, from equations

However, the ratio can then also be coﬁputed from the

(23)] and (157) o

hF =av = . - (170)
o
4y -
of - - - aw
or, after removal of w, by o2 -
1. V& : E
2%, ! - (172)
o ¥ D, g2 -
po h2 - ) j

Equating (169) to-(172) gives

by 2 2 Pog® 2 !
5 Qe B s
(o] o -

that is, an equation with which g can be determined as function of h.
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Equation (173) is solved again, while small terms of the second
or higher order asre disregarded, by putting

g =g, (1 +y) (174)
quantity g$ is agsumed to be the numerical value resulting from
173)

equation ( for vanighing kinetic reaction and vanishing Kirchhoff
sound dispersion, that is, when in equation (173),

v—0 T—0 A'1—=0 Alp—1 Az (8 - 1) A'p—>1

(175)
But in that case g2 _
1= . (176)
poh2
or, after introduction of
%Po BT,
= — l
8o \‘po . (177)
L (178)
o = gh
o]
and
2 (179)
8? = .h_2(1 + y)2
&g
With it (173) becomes
A oA+ mean)E o+ y)2
27 \37%2" b= Y
8o
I (1+y2(ay + ea, + 21+ )enTEs' - KA']
= 2 ¥ 1 27 73 y 3 L
Lol : 8o

i o (180)

R
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or -
t h hv t 1
RAE- Lé(gAQ-FTRAh)
89
= (1 + D28ty + 5 A7) + Dr(ary - kAT (181) i
. _
o -
or _
(h'V Al + T A' )
LAY =z ~2 3
(1L +y) = 2 kb 3 (182)

A'y + KA, 302 (A + K B'5)

(183)

7

which is the final formula for the case when the Kirchhoff sound
dispersion and that due to kinetic reaction are superposed in the plane,

laterally unlimited sound wave (RW - longitudinasl demping). For vanishing
Kirchhoff dispersion, that 1s, for V=30 and: T30,

(1814)

b3}
[}

which is identical with equation [(775]. For vanishing dispersion due
1 Al .

to kinetic reaction, ZTE =0 and ZF§-= K — 1, which is identlical with _
2 - . : . R ’ U

equation (146). 2
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The sound dispersion values computed for dissociating COo at 2600° K
and 1 atmosphere by equation (183) are reproduced under No. 4 in Table 7.
They do not differ as regards sound gbsorption within the calculating
accuracy from the data under No. 3; that is, the demping constant 7 can
be tolerably well approximated from the pure kinetlc redction damping
constant and the damping constant of pure Kirchhoff sound dispersiomn.
Within mathematical accuracy, the sonic velocity a of No. 4 is identical
with the sonlc veloclty for pure kinetic reaction disperaion, and so
confirms the previously expressed susplcions concerning the sound
absorption and the sonic velocity at superposition of kinetic resction -
and Kirchhoff sound dispersiom.

3. Kinetic-Reaction Sound Dispersion and R-W Longitudinal
Damping in the Plane, Laterally Unlimited Sound Wave
with Simultaneous Allowance for Diffusion

The foregoing examples have shown that above 109 cps, both the
Kirchhoff and the kinetlic reaction dispersion must be taken into
consideration. The former consists in the fact that, at these high
sound frequencles and hence correspondingly short wave lengths, the
momentum and temperature differences between adjacent wave crest and
trough during one cycle already start perceptibly to balance. If the
chemical composition of the gas is the same at every instant (constant
molar fractions in time) as 1s invariably the case in the absence of
chemical reactlions, the exchange of momentum by friction end the exchange
of heat by conduction‘'are actually the only irreversible transport
processes of this kind that can produce the sound dispersion. But the
conditions are different in the presence of chemical reactions. Concen-
tratlon differences occur between wave crest and wave trough, especlally
when the chemical reactions are still able to follow the sound frequency,
s0 that an irreversible particle exchange by diffusion must also be taken
into account. Whether its effect on sound dispersion is greater or
smaller than friction and thermal conduction is imposeible to predict
beforehend. In consequence, an exact formula must be derived in which,
agslde from the factors causing the dispersion, the diffusion is also
considered.

Of the initial equations [(41)] to [(46)], the equations of

continulty remained unaltered. They are now supplemented by diffusion
terms. Thus equation [( 11)] becomes

aN 4 & dz,, <N’)
oS VeI e (185)
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It is to be noted that the number of noles ﬁz diffused through

1 cm? ber gecond in x direction in the nonisothermal field is not
given by

¥, = -p o - (186)

X

gec.

. N '
7 - -0 3(3) (167)

o (@E me

but by the expression

with

J
c = Z ey = total number of moles

cm3

For, at validity of equation (186), a change in the composition of the
gas due to diffusion could occur ln the noaisothermal field, even if '
originally the molar fractions are everywhere the seme; however, such
changes in gas composition certainly do not occur in First approximation
on the basis of the pure diffusion coefficlent D, but at the most in
second epproximation, because of thermodiffusion, which 1s, however,
disregarded here.

Equation (187) can also be derived by the kinetic gas theory.
Bearing in mind in (185) that

BN +
N (1 + -—J-)
Ny _ 9oV " W) xmu(l,, oty @3) (188)
N N N i)
No(i + §g) © Jo o '
No

we get
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for identical diffusion coefficient D and omission of the small terms
of higher order, and by summetion over all types of particles ]

m
o _ v, P ’
dat > Va dt | (150)

In the last equation, the diffusion term has disappeared because
the diffusion did not alter the total number of particles in a volume
element, but merely the composition.

Reinsertion of the expressions [KE?H , followed by differentiation,
glves

m
R.-3v zm (192)
) m- Njo g2
- Jo
lij(l % D) - 'Z("jm Vo % D)Em (192)

The third continuity equation KhSS]'(hydrodynamical) remains the
same, if by V 1is meant, as before, & volume in which the diffusion
according to equatiog (190) is not accompanied by a change in the total
number of particles. '

The energy equation (155) and the subsequent equations of section
V, article 2 are not affected by the inclusion of the diffusion, since
the heat conductivity itself, viewed from the gas kinetics standpoint,
is nothing but & diffusion of dissimilarly "hot" molecules.

6 uld b A&V _ VW ather th
Now it should be readily apparent why 7 i - Sx rather an

d _ paw was chosen as hydrodynamic continuity equation; because the

at  ox
density (as well as the momentum) in a volume element cen well vary
by diffusion of heavier or lighter molecules (cf. equation 193).
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The inclusion of the diffusion in the momentum equation (157) would
theoretically introduce additional terms, a8 already indicated by '
Ackermann! on the exemple of the carburation boundery layer. The
diffusion in unit time through the unit of surface perpendicular to
the X-dlrection produces the followlng momentum transport:

> d N D

T= 3 (Mgw)D 'v'é"( ) (193)
0 2

But in view of its dependence as the square of the sound emplitude,

as indicated by the arrows, it may be discounted in the first approxi-
mation, and the unaltered Navier-Stokes momerntum equation (157) retained.

Since the continuity equations for the individual particle types
have changed with the inclusion of the diffusion, the n equations (60)]
will no longer result in the equations [(66)] or the lower n equations
of the system [(69)] (identical with equations (160)), but present
additional terms 1n the dimensionless constants, such as B';,, for

instance, which must be proportional to %ED

By [(60)]
U -0 v o1agy _ -
U U,V N

W 2 %% I
gl ) ml )

or after introduction of IZFTD and allowance for (192)

onfiN(%3) _ (W)X M, R
U,V \N Er/V "\EF " "Yp

Tpckerman, G., VDI-Forshungsheft 382 (1937).

ERl
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2
or by disregarding higher powers of %— D:

= (Az +KCI)%+ CZ% +

m :
Z (i"plm =wvon T ViVm +Zvjl Im W, +

52 ' J N | \zn
% Dj- vzvm + ZE:'VJZva ﬁﬁ X

N

After introducing the new dimensionless sbbreviation

B", = e 2 VooV N VqVm| +
m = E_-T_Vm-‘-z W m g 1¥m

B"

Bzm + i(pzm +

1 =
B’ m ~ B'Zm"'

s

the n relations follow as

m
v P - - zm
A, + ECq] =+ C .='—+E B" = =0

2 J
icplm + ;SE D@"Jl"jm 1'\?3 - VIVIII)’

J
N

\

\I/-i

17

(196)

(197)

(198)
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They form, together with the equation (159) ﬁnchanged by
diffusion, a system of equations which is to.be solved Wlth respect

_pV
Pv ) . . _— =

ta

Similarly to (169) follows

23
A" " )
‘_EV _ 1 + —‘Hh T A 3 - . .
b A S (199)
bV 2 '
Aug - %’KT A"L].

where the determinents A" are formed exactly as the determinants ,A'
that is, corresponding to equations (164) to (167), except that Bz "
replaces Bl !

Since the hydrodynamic equations (170) and (171) can be taken over
V
unchanged, the elimination of 5%— from (172) and (199) leaves,

analogous to (183), the final formula

- A" )
g = :1_1 — 1 - -h_ )il} + T _3 (200)
ap " 2\ 3 Al
K+ _F; 8o 2
o _ _ . -

_ This equation (200) must be solved by successive aﬁbrokinétion;
since for a given h, the g to be found from (200) is also contained

in the terms B, " of the determinant A". However this approximation
7.m 2 .

wilt g, 4
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should be easy to do in many cases; for, in the example of the

assumed COp dissociation in Teble 7, no difference between the
dispersion data uunder Nos. 5 and 4 computed with and without diffusion
can be observed.8 In other cases the conditions may be similar, so that

2
the use of the g and GE velues temporarily taken from (183)

frequently represents a very good approximetion. Admittedly, the complete
agreement of Nos. 4 and 5 in Table 7 seems rather strange; for the
friction and heat conductivity are quite considerable in the frequency

range of 107 to 107 cps, and the diffusion is, gas-kinetically, an
irreversible trensport process of entirely equel type. The reason is to
be found in the fact that at these frequencies either the average
diffusion period +p for the passage of the particles through a half
wave length is substantially greater than their 1life perlod, which here
is characterized by the half vibration period tg, or else that for the

w%.?Sl me&mkﬂrw&mmcmahanOmefdbwme
8

. N
sound frequency and thus along the sound wave the molar fractions i
' N

remein constant in time and space. We obtain

t 2 2
D, 1\ 1 Qa) _la _ & S
g (E) D(Z D T D | (201)

t .
The thus computed EB values are given at the bottom of Teble 7.

S
[}

8The calculation was made with the diffusion coefficient
Dogog = (7:0 + 2.0) cm?/sec., which had been obtained with Sutherland's

formuls for the free path length from the value D273 = 0.1k cm?/sec.

applicaeble at 273° K and 1 atmosphere. Thus the ratio is

kinematic vigcosity v _ 3.9 «»
3iffusion coefficlent ~ D = 7.0 0.56, while the Prandtl number
kinematic viscosity v :
is Pr = — - : = —=0.85. MNo exact
temperature conductivity T 2 © exact equality exists

between the quantities D, ¥, T, even for gases, presumably because of
the different effect of the persistence of the molecular speeds. See
also J. H. Jeans, Dynemische Theorie der Gase, Braunschweig 1926,

pp. 331 ff, 3kof, 380, and 397f.
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L, Friction end Heat Conductivity at Sound Propagation in &

Smooth-Walled Pipe (G. Kirchhoff)

According to equation (148), the sonlc velocity in a plane,
laterally unlimited sound wave 1s not affected at all by friction and
heat conductivity, and the dsmping conastant itself is affected very
little, when no rather high frequencies (f > 107 cps) are utilized.
Consequently friction and heat conductivity introduce only small
correction terms of the second order. But Iin a pipe of finite transverse
dimensions, the conditlione are entirely different. In this case, not ™~
only a transport of momentum and heat, largely parallel to the direction
of propagetion of sound (R-W longitudinal damping), but also a transport
cross-wilse to it, is involved, because the tangential as well as the
normal component of the veloclity vector must disappear at the pipe wall
and the gas itself must sbsorb the constant temperature impregsed on
the wall; 1n other words, all periodic phese changes in the gas elements
directly adjacent o the pilpe wall are 1nfinitely small and as & result
these elements will experience an irreversible momentum and heat exchange
with those located more toward the axls of the pipe. The sound wave ’
receives an additional damping, termed R-W lateral damping.

The problem of the sound wave 1in a smooth pipe with allowance for
friction and heat conductivity (but with kinetic-reaction demping due
to incomplete equilibrium disregarded) was treated exact by G. Kirchhoff,
after Helmholtz'slO earlier discussion of the effect of friction. -
Kirchhoff's calculation is also reproduced in Lord Reyleigh's "Theory of

Sound."11

The boundary conditions of the sonic field at the plpe wall
(speed = Q, temperaturd = const.) can be defined exact only on the very
wlde or very narrow pipe, where the concepts wlde and narrow are expressed
by the numerical values of the dimensionless gquantities '

CLpy ‘/2 > 10 wide pipe (202)
< 1 nsrrow pipe

PPogg. Ann. Physik 134, 1868, pp. 177-193. o

lOHelmhol‘bz, H., Verhandlg. des naturhistorisch-medizinishchen - .

Vereins zu Heidelberg, Bd. ITI, pp. 16 to 2qQ. Conference on Feb. 27, 1863.
llStrutt John William, and Rayleigh, Baron, The Theory of Sound
p. 319 £f. 2 Aufl. London 1929.
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(r = pipe radius, f = sound frequency, V = kinematic viscosity, T = tem-
perature conductivity.) If one of these cases prevails and the effect of
the R-W longitudinal damping (which resulted precisely in formulas (146)
and (148)) is purposely disregarded, the sonic velocity a and the
damping constant 7y of the sound emplitude due to the R-W lateral
damping, follows as

a = lj \I—+ (K - lN' (203)
for r Eﬂf > 10
y = \{ﬂ—f[\[\’_'l' (& - l)_\ﬁ'_] (204)
Tag

a = a4 n/—z- (205)
2rV
2nf

for r\|— < 1
v

7 = . (206)

where, as before, ag =\’—%; is the sonic velocity in the laterally

unlimited medium, if no kinetic reaction sound dispersion prevails. The
equations (205) and (206) of the second case are of no interest within
the framework of the present report, since they describe the propagestion
of sound in capillary tubes of 10-3 cm or less inside width; merely the
quantity r géz- with rationally assumed mumerical values of Vv end T

needs to be computed,l2

The equations (203) and (204) were evaluated for the cese of high-
temperature dissociation and the data compiled in Table 8.

12‘I'he equatione (205) and (206) are used in the calculation of the
sound-absorption capacity of porous walls, when the pores have the cited
dimensions; (see footnote 11, page 328 fr.)
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The sonic veloclty a 1in the pipe is lower than in the laterally
&g -
- is. .
) :

unlimited plane sound wave. The corresponding difference
so much grester as the pipe is narrower, as the frequency f is lower,
and Y and T are higher, that is, as the pressure is lower and the _
temperature higher. This should be borne in mind when making sound
dispersion messurements in the audible frequency range at high tempera-
tures, hence, under conditions likely to be of particular promise for the
kinetic investigation of dissociation reactions. l3 Congider a pipe 2 cm
1n width in contrast with past sound dispersion measurements )

Pa 107 sec.+

8o - &
V R.T ¥ 0.09 cm®/sec. 9

and audible range in the high-temperature zone -

£ % 103 sec.™t )
v Tl cme/sec a—'o—a;-—a. g 2 X 1072 (208)
©

Thus, in the past ulirasonic dispersion measurements in gases, a pipe
correction could be, in general, omitted. But at audible sound fre- _

quencles in the high-tempersture range, 1t must be taken into consideration.

According to equation (20%) the portion of the damping constant 7
due to the finite width of the pipe (R-W lateral damping) is so much
greater as the pipe 1s narrover, the frequency higher, and the temperature
higher. 'The frequency effect for the damping comstant .7 1s therefore
ay - @

ol

inversely proportional to that of the sonic ;elocity correction

l3And rrincipally for two reasons: on the one hanﬁ, little sound
absorption, on the other, less interference by oscillation dispersion,
(section VI).

Al

1,

1
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The 7y value following from equation (204) varies a little with
the temperature for one and the same gas; because the quantities Vv

and /T in the numerator are proportional to '1‘3/1L up to T, while

the sonic velocity in the denominator is &g~ Tl/z, therefore the 7
value applicable to the R-W lateral demping exhibits a slightly greater
temperature effect than that in equation (1L48) applicable to the R-W
longitudinal damping, which was practically 1ndependent of the temper—-
ature. .

5. Comparison of the Damping Constants 7 For Pure Kinetic
. Reaction Sound Dispersion, for Pure T-W Longitudinal
Damping and Pure R-W Lateral Damping

In connection with figure 3d (TM 1268) it already had been pointed
out that, for sound dispersion measurements in the high-temperature
range, the sound sbsorption due to kinetic reaction can impose an upper
limit on the frequency range accessible to the measurement, The next
problem is to ascertain whether and to what extent the purely physical
effects of the R-W longitudinal and lateral dampling are involved., 1In
figure 4 the deamping constants 7y are represented as function of the
frequency f for the following individual cases:

Curves I and II are plotted on the basis of the date in Table 6
(T™M 1268) and correspond to the estimated casés I and II of pure kinetic
reactlion sound dispersion of the dissociating COp at 2600° X and 1 atmos-
phere. Curve IIT is computed on the basis of equation (146) (cf. Table 7)
and describes the effect of pure R-W longitudinal demping in the plane,
laterally unlimited sound wave,

Curves IV are computed by equation (20L4)(cf. Table 8) and present
the pure R-W lateral damping in the smooth-walled pipe.

Disregarding for a moment the curves I and II, that is, on consid-
ering a gas without any dispersion. due to kinetic reaction, the entire
sound sbsorption at low frequencies is defined solely by the curves IV,
that is, by the R-W leteral damping. But with increasing frequencles,
the curve III assumes values no longer negligible and ultimately the 7y
values of the curve III become even substantilally greater than those of
curve IV, Thus the R~W longitudinal damping regarded at first as
correction term of the second order in the Kirchhoff calculation for
the pipe and therefore ignored actually exceeds the R-W lateral damping
at certasin frequencies, 1In this range, the total R-W damping in the
pipe can then, however, no longer be described by equation (204). The
corresponding branches of the curves are therefore indicated by dashes
in figure .. Even so, a not altogether wrong estim,ea.’c.t= of the R-W .
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damping can most likely be obtained by following the curves IV at low
frequencies, and then changing, at higher frequencies, to the curves III
as indicated in figure 4. On the transitionsl branches, ¥ = YTIT 71V
was assuned additionally, .

Where is the upper limit of the experimentslly accessible freguency
range if it were defined by the R-W damping of a smooth-walled pipe
alone? Conducting the sound over a path length of only 10 cm into the
actual test chamber, while the sound intensity is not to drop more than
0.13 times its original value, should give

2710 >4 93 and hence 7 S 0.1 . (209)

So, if the sound-inlet pipe bhad an inside width of 6 mm, for reasons
of minimum thermal reflection of the hot test chamber, the upper limit of
the experimentally still accessible frequency range would lie at around

2 x 107 cpe, according to figure 4.  Such a case would still be compatible ST

with an additive kinetic reaction &ispersion, as represented by curve I,
but no longer with one such as case II, where the kinetic reaction
damping alone would already contribute a greater proportion to the
totel y than the R-W damping. . - - a

In the evaluation of the total damping constant, 1t was assumed to
be built up additively from the values for pure kinetic reaction damping,
for pure R-W longitudinal damping, and pure R-W lateral demping. This
actually holds largely for the plane, laterally unlimited sound wave,
where the last type of damping cancels out, as indicated by the numericsl
values of Table 7. But no exact statement regarding the conditions in a
pipe of finite inside width is as yet possible. ©Still, there is no phys-
ical basis for any marked departures from the additivity, hence the
following conclusion:

Sound-dispersion measurements in the high-temperature range gbove
107 cps are scarcely feasible, unless they succeed in producing sound
of definite frequencles in the hot test chamber itself, where the sound
would not have to travel the minimum distance of 10 cm, but peghaps only
a few wave lengths. Ten wave lengths cover about 0.8 cm at 10° cps
according to Table 6, TM 1268,

In point of fact, Sherratt and Griffiths* were uneble to effect
sound measurements in COp of 1000C C even at 27 kcps, on account of. o
excessive sbsorption. They applled the acoustic interferometer method,
to a pipe of 1l.5-cm inside width and 130-cm léngth. The oscillating

thherratt G. G. and Griffiths, E., Proc. Roy. Soc., London (A) 1)6
pp. 50k to 517, "1936.
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quartz producing the sound was, of course, located outside of the high- .
temperature zone, since it would be subjected to transformation to

o quartz at a mere 575° C. The findings by Sherratt and Griffiths are
readily intelligible on the basis of figure 4. But the knowledge of

the diversified damping effects also refers to another point, heretofore
perhaps not always observed in suitable measure:

As Indicated earlier, the setting period B of oscillating heats
can be calculated direct from the frequency of the kinetic reaction sound
absorption maximum (cf. equation 10Lke), when, according to figures lc
and 3b, T™M 1268, the damping constant 71 vreferred to the wave length
1s plotted against the logarithm of the frequency f. Correctly
speaking, only the portion 7p), of the sound dispersion due to kinetic

reaction may really be applied, and not the experimentally defined
damping constant 7, which also contains the friction and heat conduc-
tivity effects; for according to (148) and (204) the assumption of an
additivity for the individusl deamping effects gives

Yy =¥ + &gfflf.gl.+ (& —1)7| + VETE/V-+ (k — l)V“ﬂ (210)
Ch 2&03 3 . reg .

hence

7l = Yopl ¥ 212%-[&3!+ (e - 1)7:! VRN - (= yE] (211)
8q - .

curve - v—— e —
with monotonic rising monotonic abating
max- curve curve

imum

and therefore

3(71)  _ 9(cnl) , 2t
dInf J3Inf 8o

E%v-f- ( _1)1-]_\[;[\[;"' (k ~ 1) \F]

or VT (_23_2)

The maximum of the experimentélly_accessible yl curve is
shifted relative to the maximum of the theoretically interesting
yopl-curve, that is: _

At preponderete R-W longitudinsl demping, the y1-maximum
lies at a higher frequency f than the Yop! -meximum.

At preponderate R~W lateral damping, the y1 maximum lies
at a lower frequency than the 7gpl-maximum.
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With equations (210) to (212) the location of thé theoretically

interesting 70! maximum could be computed from the _experimental I

yl-maximum, Admittedly, this correction would not take care of other
demping effects, such as those due to roughness or porosity of the
wall, since.Kirchhoff's calculation was based upon 8 smooth and tight
pipe wall.,

VI. SUPERPOSITION OF INCOMPLETE OSCILLATION EXCITATION AND

INCOMPLETE ADJUSTMENT OF THE DISSOCIATION

EQUILIBRIUMS IN THE ACOUSTIC FIELD = T

In this section, two gquestions are involved:

1. The extent to which the theory should be extended when not -~ -
only the dissociation equilibriums, but also the heat of
oscillaetion can no longer follow the sound Trequency, 50
thet kinetic reaction "dissociation dispersion,' as well as

"oscillation dispersion,” occurs.

2. The eventusl disturbances due to oscillation dispersion to be . o

expected in sound measurements in the high-temperature zone.

The first gquestion _1s answered comparatively quickly. In the -
original equations Khl] to [(46)], only [(h5[] contaeins the heat '

capacity Cp, or more accurately, the expression Cp %%- Now, when the

inner degrees of freedom of oscillation aie able to follow the sound
frequency only incompletely,. to each one may be coordinated a separate _
inside temperature Ti,, so that [(45)] becomes - N

m _ _ L
Jsuy dTll _vdp _ dz, - _ ' : R
<Cpadt +§ Cinat ) VaE E mgg =0 (213)

" The inside temperstures Ti; are gradually aSsimilated to the
outer "tangible temperature” T, end correspond to the equation

T-T,, - -

iAo Tih T o N
& B = (214)

@

g

i
1
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where PBj 1s the average adjusting periodld. There are as wany of
these equations as there are different adjusting periods B,. Fortu~
nately, one single adjusting period has been sufficient up to now, even
for molecules with several different normel oscillations, where
different Bj-values were suspected, The equations [(h?)] hold for
T4j in the periodic field of sound as well as for T, hence

Tirn = To + 8Tin, with 8Ti) = Re {Iﬂegx“’ht} (215)

end therefore by (21k4)

z

"T‘i)\. =-l + hBX . (216)

The elimination of Ti; from (213) and (216) leaves
> w3
Cpa * 1 + hBy/— -V - zg: WpZgm = O (217)

TMpmnwsﬂmlmmM%,%mdﬂhe@mmn[%ﬂ,mmmtm

P
Accordingly the Kk introduced by [(l9il is complex, hence

Cin | _

A

Cin
Cpa + _é —_—
.1 + hBy
2‘ Cia
Cva 1 + hBy,

when writing MR = Cpg — Cyg.

same, except for the replacement of C., Dby
l+h-BX

or

with h

&
|

2nfei ' (218)

15schaefer, Kl., Ztschr. physikal. Chem. B 46, pp. 212 to 228, 19kO,
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On considering only one adjustment period £ and no further
dissociation reactions, the expressions TKLBH as well as [(22{] to
[(Eh)J become zera and equation [(70)] becomes .

op NR

&2 =K = 1 + .. éi .

33 - : N L
‘ Ve T ITH hp

R(1 + 1-2xfB)
Coll + 1e2xfB) + &4

=1 +

- (219)

hence, exactly the same equation .(10Lea) again, as, of course, expected.

The second question, whether perceptiblé disturbances due to
“"oscillation dispersion" are to be expected, could be answered exactly
if the temperature relationship of the characteristic adjustment
periods B; up to the correspondlng temperatures were known. But;
unfortunately, this is kuaown only to about 673° K. Inferpolation up
to 2600° K is, naturally, questionable. Nevertheless, it is attempted
even at the risk of it not being permissible.

The number of collisions which must be exerted on a molecule to
transfer its oscillation quantum to translation energy ranges between
z*¥ = 10° .and 107, If the molecule collides 1010 times per second
(NPT conditions) the adjustment period amounts to B z'lO"8 to 103
seconds. The characteristic frequency Ffor the maximum of the oscil-

lation gbsorption would thus be sabout f_ = ElE ~ 107 to 102 cps

- ﬂ =
according to equation (10ke). The first value applies approximately to
CO2, in which the conversion of translation to oscillation energy was
facilitated by added Hy0, the last value holds, in order of magnitude,

for purest, dry Oo. - -

The temperature relationship of:the number of collisions P
required for abating the oscillation was studied very exhaustively by
Eucken snd assoclates. They foundlb: -

1, In those cases, where z* 1s & small number, hence where
the abatement of the oscillatlons is already very easy, the
temperature relationship of z¥ is rather small aﬁ&_particularly
not in any definite direction.

10Euchen, A. and Kiichler, L., Ztschr. techn. Physik 19, 1938, pp. 517
to 521: Summarizing Lecture at the Physicists' Conference in Baden-Baden,
1938, o



NACA TM 1269 o . . 29

2, In those cases where =z* 1is large, hence where the
ebatement 1s difficult, 2* decreases monotonically with rising
temperature.

At thils point the first case is less Interesting, since according
to the foregoing the dissociation dispersion measurements will be made
at lower frequencies than the earlier oscillation dispersion measure-

ments., The second case of great.number of collisions (z* = th to 107)
occurs chiefly on pure gases., Examples are presented in figure 5,

where z* 1is plotted against lgéu Allowing for the scattering of the

test points, especially on comparison of the wvarious authors, the test
series can still be spproximated by straight lines. From their slope,
the effective heats of activation g can be computed (expressed in
wave numbers (dimension = cml) at the curves), Strange to say, the
g values coincide fairly closely with the lowest normal oscillations
of the respective molecule, as is evident from Table 9.

This could be interpreted with the assumption that a molecule
excited in its normal oscillation can, at collision with another mole-~
cule, lose its oscillation quantum only when the two colliding molecules
together have an additional minimum energy of the magnitude of an
oscillation quantum. Such an interpretation immediately raises, of
course, the question whether this additional energy necessary as heat
of activation is to be regarded as relative energy of the two colllding
molecules, or whether the second colliding molecule, which forces the
first colliding molecule to yleld its oscillation energy as translation
energy, might not i1tself possess an ldenticelly large oscillation’
quantum. « For the present, further speculations are useless, so long &s
no additional experimental data are available., But it will be shown in
what ratioc the z¥ required for oscillation sbatement would be reduced
for pure Oy, if* such an agreement between oscillation quantum and
effective heat of activation existed for it, too, and if interpolation
to 2600° X were permissible. The normal oscillation guantum of

1580 cmr—L = 4500 cal/mol would give

4 500%2307

7% =
2600° K _ 10 4.573x293x2600 _ 15-2.98 (220)
Z¥2930 K | ' '

Thus the number. of collisions required for abating the oscillation
would drop by 0.3 percent, the characteristic freguency of the oscil-
lation dispersion zone increase by 0.3 percent, or from 102 to 107 cps.
But with it even the most difficult excitable and abatable Op would
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interfere rather little in high—temperaturq-appuqtic measurements,
(First reason,) Naturally, this extrapolation is no longer uncertain,

But there is also a second reason thaﬁ_épeaks agiinst excessive
disturbances by incomplete oscillation adjustment of O, in the high-
temperature zone. Eucken and his asscciates observed again and sgain
that the adjustment of the oscillation heat of a molecule is very much

facilitated even when the gas contains the least traces of foreign S -

molecules capasble of forming quasi-chemical combination complexes with
the basic gas. But such additional substances in the high-temperature
zone are the atoms, so that the appearance &f the following collision

complexes can well be reckoned with; “

Op+0 ~» 0o+« 0 _ . . T

CO+0 —) €O 0 : o (e2n) o T

No+ 0 — No « O " - - -

00-0 would be & quasi-ozone moleculé.l? - - - =

I'fThe amount of 03 present in the thermodynamic equilibrium_qan _
be estimated by the equation | . — .

10 Pg. = 3 | : '
15(POO§3/2 - T.Ath 10-° 3.60 with E’Oe] = E,'E') 3‘] = Atm. (222)
2

-

which was obtained by using the values 'AC298"= 38.9 aéa AH298 = 34.0'kqg%_
for the resction 20p=03 (Chem. Manual 1939, TII, 238). For 2600° K

2 _
- 0 N
and 1 atm. total pressure with P02 = 0.078, it would give 561 = 1,03 x 10 7,
: = o MR

Po - = e

compared to — = 0.087 in Table %.
POE .
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In actusl measurements it would, of course, have to be always
ascertained that the dissociation dispersion to be studied was not
accompanied by any oscillation dispersion., This is most easily done
by numerically comparing the experimental sound date wlth the values
computed by {(70)] and %(78H or L(79)], after correction for the R-W
demping and eventual departures from the idesl gas law, &

The lowest sound velocity is obtained when the dissociation, as
well as the adjustment of the oscillation heat, 1s able to follow
the sound frequency completely., If one of the two processes ceases to
follow, the sonic velocity must be higher., Then it will be checked
whether the value of the complete oscilletion adjustment but of the
incomplete dissociation equilibrium adjustment is reached anywhere,
or vice vers8s, or finally whether in a single, no longer dissolvable,
sound-dispersion stage both kinetic processes lose their adjusting
capacity on the Ilmpressed oscillation period simultaneously. The last
case would neturally be least desired., Unfortunately, it occurs in the
No0y dissociation, which was investigated several times at room

temperature, without definite result.,’? But in this instance, a third
reason can be given which likewise militates against abnormal disturb-
ances by osclillation dispersion in the high-temperature zone, namely,
the ratio of dissociation energy to oscillation gquantum in the N2O),
tests at room temperature was about 1L4:2 = 7, while in the dissociation
reactions of interest in the high-tempersture zone the ratios are most
likely to range at 100:2 = 50, The transfer of such a many times-.
greater dissoclation energy to a molecule is, however, considerably
harder; at least, it will take more stages than thet of the relatively
low oscillation quantum; hence the first process is in all probability
slower also. Thus, however, the zone of the oscillation dispersion
would, lie at higher sound frequencies than that of the dissociation
dispersion,

18Rucken and Becker (Ztschr. physikal. chem. B27, 1934, pp. 219-234) have
given a correction for the departure from the ideal gas law for osclllation
dispersion measurements. But whether this correction holds for dissociation
dispersion measurements as well remalns an open question. The departures from
the ideal gas law effect: (1) an extension of the equation of state by the
second Virial coefficient and (2) an extension of the equation of energy (9)

by the term (-g-; RL LS (3) the introduction of activation coeffi-
NJ -

cients in the law of mass effect [ﬁloﬂ and equation.[lGZﬂ . Point 3

vae not teken into comnsideration in Eucken's correction, though it

should be unimportant even in osciilation dispersion measurements,

since the activation coefficients of an oscillating and a nonoscillating

molecule are the same, Bubt 1t is different for the excitation of an

electron term, since such a molecule exerts, for example, other force

effects outward, by reason of increased polarizebility.

683;9Kneser, H. 0., snd Gauler, O., Physikal. Ztschr. 37, 1936, pp. 677

to . ‘
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VII. SIGNIFICANCE OF THE HEIMEOLTZ RESONATOR
IN SOUND-DISPERSION MEASUREMENTS

The remaining gquestion concerns the method of making such sound
measurements, especilally in the eudible frequency range and at high
temperatures. By the usual method of standing waves in the pipe
(acoustic interferometer) generally applied to ultrasonic measurements
up to now only th to 102 cps are involved, At £ =.103 cps the wave
length 1 is already 77 cm according to Table 6, (TM 1268) so that the
test chamber to be uniformly tempered would have to be 50 cm long at

least for a single helf wave. And even if this were possible, it would
render a frequency range of no more than two powers of ten, that is,

from 103 to 105 cps. That is not very much considering the dissoci--
ation dispersion curves reproduced in figures 1 and 3, T™M 1268, But the

absolute uniform tempering of a space 50'cm in length_to -ﬁT-< 10 =3

is hardly possible without grester outlay, since blocks of c0pper or
aluminum are, naturally, unsuiteble at those high temperatures. It
calls for ceramic materials with low thermal conductivity. Whether
the heat exchange by mediation can balance thls defect remeins to be
seen,

To sum up, it calls for & method of finding the sonic velocity
where the actual test space is smaller by ap order of magnitude than
the wave length. This requirement 1s met by the Helmholtz resonator,
which, strange to say, has never been used for sound-dispersion measuré;
ments in the audible range.

The Helmholtz resonator consists of a hollow ball with a cylindrical
open neck, The natursl frequency £, follows the equation

C : . '
0 < (e23)

where a is the velocity‘of'sound, 3 the Qolume of the resonator,
and C the so-called acoustic conductivity of the resonator throat.

Lord Rayleigh's representation’ (footnote.ll, p. 170 ff.) is particq-

larly interesting, If S is a sphere of 2R diameter, and the neck
is & circular cylinder of 2r inside dismeter and of length L

2 .
S = %% R3 and C o= " (224)
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Expressing the width and length of the neck nondimensionelly by
the dlameter of the resonator ball, that is, putting

and = o ' (225)

L
2R

By
n
ko)

gives

ap 3

o=
EIIR 26+gp

f (226)

Of chief interest is the ratio of resonator ball diameter to
resonance wave length: " ' :

2R_2RHp o [ 3
2
lo & T 20 +

(227)

I\)_éh

For the plausible numerical values p = 0,2 and o = 0,5, it

results in .
2R_0.2 3 _o.ou8 - (228)
lo 2x 1.314

The ball diameter of Helmholtz's resonstor would thus be only
about 5 percent of the wave length, while for a standing wave in s
pipe closed at both ends this must be at least a half wave length long.
Helmholtz's resonator would therefore be of ten times smeller dimensions
than required by the method of standing wave in a pipe (acoustic inter-
ferometer). ' '

Owing to the radiastion demping, the resonance curve of the
Helmholtz resonator has a finite half-width value 25. It can be made
nondimenslional with the natural frequency fo:

3 o3 3 S
== %‘=%r(———)—3 (229)
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with the previous values p = 0.2 and o = 0,5 it giﬁes

-3 . T ' o
25 _ 8x 10 3 _-2.3x103- (230)
o b 1.3143 -

The resonsnce acuity is not bad. It is likely to be reduced by
the additional demping effects of frictionm and heat conductlvity.

This disturbance cannot be expresgsed numericelly. But if it should
be small only, & reduction of the relative throat width, that is, a
reduction of %ﬂ and i%’-—s- st111 Purther by transition to still smaller
o ) o
p values at constant o, might be recommended becsuse p affects the
expressions (227) and (229) in the same sense.

Obviously, a number of problems must be solved experimentally
and theoretically before sound-disperslon measurements in the high-
temperature zone can be satisfactorily carried out and interpreted. But
the kinetlc explanation of the dissoclatlion reactions under extreme
temperature conditions is not to be evaded, if one day it 1s desirable to

understand the chemical processes involved in flames or detonating waves.

SUMMARY

1. A generélly applicable formula Izeqyation_29ﬂ_ is derived for
the differential isentropic exponent m in dlssoclating gases: :
m = E? 35- in the isentropic pV" = const.; complete equilibrium at

8 ) )
every instant of the phase change being postulated. The number and
kind of dissociation equilibriums are arbitrary.

2., The kinetically delayed balance of c¢hemical gas equilibrium
(reactions dissociation and recombination) in the field of sound is
dealt with. A generally applicable interpretgtion formula for sound-
dispersion tests 1s obtained: equation :(70)1, together with equa-
tions [(78) and [(797]. In contrast to the premises of Einstein and
Kneser, the formula was derived without special assumptions regarding
the usually still unknown kinetics of the adjustment processes., Ih the
new formula, any desired amount of reaction possibilities can be taken
into consideration.

3. The sound-dispersion measurements primarily afford the speeds
of the thermodynamicelly unrelated over-all reactions. The elementary
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reactions defining them follow secondarily by additional assumptions,
as by the principle of microscopic reversibility, for instance. The
concept of "step-wise retardation" (retardation by up-position lock)

at which the thermodynamic equilibrium is maintained by reaction cycles
(one path track) is ruled out. .

4, The theoretical cases of sound dispersion already treated by
other authors such as the incomplete equilibrium adjustment of & mono-
moleculaer dissociating and bimolecular recombining substance (Einstein),
or the incomplete adjustment of a single degree of freedom of oscillation
(Kneser), for instance, appear as special cases in the final formuia [(70)
of the present report.

5. The differentiael isentropic exponents m for two high-temper-
ature systems, namely, the Op and COp dissoclation, are computed
and the presumsble sound-dispersion zone for 2600° K and 1 atm. total
pressure estimated. The general character of sound dispersion caused
by kinetic reaction, that is, the frequency relationship of the sonilc
velocity a, of the damping constant 7 referred to unit length (cm)
for the sound amplitude and of the damping constant Y1 referred to
the wave length 1 are discussed on the basis of the obtained curves.

6. At 2600° sbsolute and 1 atm. total pressure, CO + O + M—>COp + M
as well as CO + 02—) COo + O should proceed as elementary reaction,
the second reaction could even be decisgive. '

T. The sound dispersion due to friction and heat conductivity
(R-W damping), originally developed by Kirchhoff, is discussed and
contrasted with the dispersion due to kinetic reaction. An irreversible
exchange of momentum, energy and even particle types, corresponding to
the friction, heat conductivity, and diffusion, can take place along the
direction of propagation of sound, as well as crosswise to it. The
latter occurs in the pipe of finite inside width.

Treated separately in the plane laterally unlimited sound wave
are:

(a) The R-W longitudinal damping

(p) The coupling of kinetic-reaction damping and R-W longitudinal
damping

(¢) The coupling of kinetic-reaction damping, R~-W longitudinal
demping, and diffusion effect
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For the cylindrical pipe the study included
(2) The R-W lateral damping I -

(p) Comparison of the 7 values of pure kinetic-reaction damping,
of pure R-W longitudinal damping, and pure R-W lateral
damping

8. From the numerical values of the sound absofgtion,'it is

estimated that sound-dispersion measurements above 107 cps in the high-

temperature zone will not be possible until sound of specified frequen— L

cles can be produced in the hot test chamber itself.

9., The total damping constant 71 referred to wave length 1
has a meximum only in kinetic-reection dispersion, and that only at a
certain frequency. It is largely defined by the adjusting period of
the chemical equilibriums but it can also be shifted by the R-W damping.
Preponderant R-W longitudinal damping shifts toward higher, preponderant
R-W lateral damping toward lower frequencies.

10. The new formula for the dissociation dispersion equation [{7021

is extended to include the case where the internal degrees of freedom ¢ _
oscillation of the molecules can no longer follow the sound frequenciles
(oscillation dispersion): equation [K1283 Three unrelated arguments
make the appearance of disturbances due to oscillation dispersion in the
high-temperature zone rather doubtful in an Investigation of dissociation
reactions.

1l. The continuously increasing wave length imposes a 1imit toward
low frequencies on the sound~dispersion zone accesslible to experimental
measurement, With the Helmholtz resonator, it probably will be possible
to make sound-dispersion measurements even below 103 ¢ps, because the
dimensions of the test chamber to be tempered uniformly (up to about
1 percent exact) need to be only l/lO to 1/20 of the wave length.

Translated by J. Vanier o ) L
National Advisory Committee .o o - -
for Aeronsautics.



TABLE T

ESTIMATED SOUND DISFERSION IN FURE (COp AT 2600° K AND 1 ATMQSPHERE (CASE IT)

Ch = effect of incomplete chamical equilibrium (R = friction effect)

W = heat-conductivity effect

(D = diffusion effect)

2,25 x 10}

Fo Calculati. B ! & x 1074 7 1 10 ~20y
. L) 8 —
R | ed) | ()| () ’ ity :
Ch 1% 100 7,770 1.28 x 10 | 9.5 x 102 | 0.2058 0.0875
1 _ by equation 1x 1@6 T.932 3.539 x 107% 2.808 x 107° 0.0290L 8.533 x 10
' [(70)}, [t78Y, (ol 1 x 107 7.938 3.605x 1071 | 2,861 x 103 | o.0279 7.393 x 104
- 1 x 107 1,911 2,365 x 103 | 1.878 x 103 | 0.9766 0.9537
6 o
P 1 x 10 7.941 2.365 x 101 1.878 x 10 0.09395 8 B27 x 103
w Breboze 6] | ) L o0 | aeg 1,880 x 10 | 1.305 x 107103 | 1,703 x 10206
Ch+R+W 1 X102 1.2196 x 101
3 from Ho. 1 &and Fo. 2 | 1 x 106 5.90k x 1071
y-values adied 1 x 10T 24,050
R+ W 1% 109 7.772 1.2l x 10l | g6k x10C | o.28 8.3%8 x 1072
4 ch +E15;) 1 x 106 7.933 5.900 x 1071 .680 x 102 { 2,739 x 103 7,502 x 1076
by ] 1 % 107 7.939 24,00 1,905 x 101 | 5,877 x 107105 | 3,45k x 10209
1x 100 .72 | 1.2k x 101 9.647 x 10° | 0.2891 8.358 x 102
5 m; R :o;j]D 1x1 7.933 5.900 x 10% | 1,680 x 102 | 2,739 x 103 7.502 x 106
YV eq. K 1 x 10T 7.939 24,00 1,909 x 10% | 5.877 x 10102 | 3,45k x 10209
- Y 2 -
- o Y L
£f=1x10 o % 2.25 x 10d
1 x 106 2,25 x 102
1 x 107

L]
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TABLE 8

THE KIBCHEQFF-HEIMHOITZ SQURD DISPRRSION CAUSED SOLELY BY THE FINITE PIFE WIDTH (SMOOTH AND NONPOROUS WALL)

IN PURE COp ﬂa&wxmlmmsmmmﬂ.mmsunn

B-¥ Internal Demping Allowed for, Somnd Dispersica Pue to Kiuetic Reactian and
to B-W Longitudinel Demping Digregarded.

v =3.9 caf/sac; T = b6 an/eac; K w 1.179;/V + (x — 1) /T = 2.35; &y = T.941 x 10* ca/sec

. £ =1 %10 cpe £ .1 %107 ops £ =2 %107 eps
(em)] gy ~-u 7 a, —a Y . 4y — & 4
o ( ard) =107 |o—207 ag ( cal) «-107 e~y o (m.-l) o107 o207
6 | 6.95x 1079 5.53 x 107+[0,99450.9890] 6.99 x 107¥| 5.53 x 1073 |0,9k62]0.8953 6.99 x W3 | 5.53 x 102 0. 5752 0.3309
2 |2.096 x 1079 1.6% x 103 .9835 .9673|2.096 x 103 1.6% x 102| 871 | .76 2,096 x 104{1.659 x 10 L| ,1903 3,621 x 102
0.6 6.99 x 1078 5,33 x 073] .gke2 8953 6.99 % 2073| 5.53 x 1072|5752/ L3309 6.99 x 107 ] 5.53 x 107L]3.966 x 103 1.573 x 1072
y a Yo 0o . " | i 1 ;
.arei.ogs;q 107 1.6 x 1078, 84T 1. 71T 21096 x 142,656 x 1oL ‘.15d3 3621 L 1022, 008 x 103 '1.659 6.2k x 1070 3.80k x 16715

1519
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TABLE 9

NORMAL OSCILLATIONS AND EFFECTIVE HEAT OF ACTIVATION q FOR ABATEMENT

OF THE OSCYLLATTOR IN PURE GASEB

Normal oscillstions accerding to Sponer

Heat of actlvation q

Aconstic measurement by

Qas (molecule spectra 1935) in carl -l eal fmol
c1 ‘ 1024 11 A. Bucken and R. Beckerl
: o, = %69 % | ow =
Vu = 2350,1 28| = 667.5 588 167k A. FEucken end R. Beckerl
v 1285.8 R
0z v, undisturbed level b. 1336 836 2379 A, Bucken and E. 31“’1“*1112
eaau 1368, 4 L. Kichler
v (1) . oeeoha 676 1921 A. Bucken apd E, Jaacks*
w0 |2 ' 25] = 589.0 ] ' g - '
Vs = 1265,k iy 1271 A, PBucken and E, Nimson®?
1
vt( Y. 2079 521 181 A, Bucken and 5. Aybar?
e W;(2) 859
% | 1051
Vg 2915 635 1806 A. Bucken and 8, Aybar?
GHh_ 225 = {3071 38 = 1304
B =1520 3v = 3082
1

[1v]

A,
L.

], F w

A. Eucken and R. Becker, Ztschr. physiksl. Chem. B 27, pp. 235262 (193%).
Fucken apd E. Nimann, Ztschr. physikal, Chem. B 36, pp. 163-183 (1937).
Kichler, Ztschr. physikal. Chem. B 41, pp. 19G-21h (1938).
&, Eucken and H. Jaacks, Ztschr. physikal. Chem. B 30, pp.
A. Bucken and 5. Aybsr, Ztechr. physikal. Chem.-B 46, pp. 195211 (19h0).

85-112, (1935).
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Figure 5.~ The number of collisions z* which a molecule sﬁ.stams before
yielding its oscillation quantum plotted against the reciprocal temperature
(measurements by Eucken and associates).
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Figure 4.~ Damping coefficient 7 for the sound amplitude: I and II = cases
of pure Kinetic reaction sound dispersion for the CO2 dissociation

(p.°43, TM 1288), III = pure R-W longitudinal damping, IV = pure R-W
lateral damping in the smooth pipe.
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